User Tools

Site Tools


products:ict:python:machine_learning:light_gbm

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
products:ict:python:machine_learning:light_gbm [2023/10/12 17:29] wikiadminproducts:ict:python:machine_learning:light_gbm [2023/10/12 17:30] (current) wikiadmin
Line 35: Line 35:
 5. **Setting Parameters**: 5. **Setting Parameters**:
  
-   LightGBM has a wide range of parameters that control the training process and the model's behavior. Some important parameters include:+LightGBM has a wide range of parameters that control the training process and the model's behavior. Some important parameters include:
  
-   - `objective`: Specifies the learning task (e.g., "regression," "binary," or "multiclass")+- `objective`: Specifies the learning task (e.g., "regression," "binary," or "multiclass").
-   - `num_leaves`: Number of leaves in each tree. It controls the complexity of the model. +
-   - `learning_rate`: Step size for updates during training. +
-   - `max_depth`: Maximum depth of the tree. +
-   - `num_boost_round`: Number of boosting iterations (trees). +
-   - `metric`: Evaluation metric for model performance.+
  
-   You can set these parameters in a dictionary and pass it to the training process.+- `num_leaves`: Number of leaves in each tree. It controls the complexity of the model. 
 + 
 +- `learning_rate`: Step size for updates during training. 
 + 
 +- `max_depth`: Maximum depth of the tree. 
 + 
 +- `num_boost_round`: Number of boosting iterations (trees). 
 + 
 +- `metric`: Evaluation metric for model performance. 
 + 
 +You can set these parameters in a dictionary and pass it to the training process.
  
 6. **Training the Model**: 6. **Training the Model**:
Line 55: Line 60:
  
  
-   The `early_stopping_rounds` parameter allows the training to stop early if the evaluation metric doesn't improve for a specified number of rounds on the validation set.+The `early_stopping_rounds` parameter allows the training to stop early if the evaluation metric doesn't improve for a specified number of rounds on the validation set.
  
 7. **Making Predictions**: 7. **Making Predictions**:
products/ict/python/machine_learning/light_gbm.1697113794.txt.gz · Last modified: 2023/10/12 17:29 by wikiadmin