User Tools

Site Tools


products:ict:python:data_analysis_process

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

products:ict:python:data_analysis_process [2023/09/11 14:39] – created wikiadminproducts:ict:python:data_analysis_process [2023/09/11 15:00] (current) wikiadmin
Line 1: Line 1:
- 
 1. Introduction to Data Analysis: 1. Introduction to Data Analysis:
  
 What is data analysis? What is data analysis?
 +
 The role of data analysis in decision-making. The role of data analysis in decision-making.
 +
 Python's role in data analysis. Python's role in data analysis.
 +
 2. Setting Up Your Environment: 2. Setting Up Your Environment:
  
 Installing Python and necessary libraries (NumPy, pandas, Matplotlib, Seaborn). Installing Python and necessary libraries (NumPy, pandas, Matplotlib, Seaborn).
 +
 Setting up Jupyter Notebook or an integrated development environment (IDE). Setting up Jupyter Notebook or an integrated development environment (IDE).
 +
 3. Data Collection: 3. Data Collection:
  
 Collecting data from various sources (CSV, Excel, SQL databases, APIs, web scraping, etc.). Collecting data from various sources (CSV, Excel, SQL databases, APIs, web scraping, etc.).
 +
 Understanding data formats and structures. Understanding data formats and structures.
 +
 4. Data Cleaning: 4. Data Cleaning:
  
 Handling missing data using pandas. Handling missing data using pandas.
 +
 Removing duplicates. Removing duplicates.
 +
 Data type conversion. Data type conversion.
 +
 Handling outliers and anomalies. Handling outliers and anomalies.
 +
 Data normalization and scaling. Data normalization and scaling.
 +
 5. Exploratory Data Analysis (EDA): 5. Exploratory Data Analysis (EDA):
  
 Summarizing data with descriptive statistics (mean, median, variance, etc.). Summarizing data with descriptive statistics (mean, median, variance, etc.).
 +
 Visualizing data using Matplotlib and Seaborn. Visualizing data using Matplotlib and Seaborn.
 +
 Creating histograms, scatter plots, box plots, and more. Creating histograms, scatter plots, box plots, and more.
 +
 Detecting patterns and relationships in the data. Detecting patterns and relationships in the data.
 +
 6. Data Preprocessing: 6. Data Preprocessing:
  
 Feature selection and engineering. Feature selection and engineering.
 +
 Encoding categorical variables. Encoding categorical variables.
 +
 Scaling and standardizing features. Scaling and standardizing features.
 +
 Handling time series data (if applicable). Handling time series data (if applicable).
 +
 7. Statistical Analysis: 7. Statistical Analysis:
  
 Performing statistical tests (t-tests, ANOVA, correlation, etc.) to make inferences. Performing statistical tests (t-tests, ANOVA, correlation, etc.) to make inferences.
 +
 Hypothesis testing and p-values. Hypothesis testing and p-values.
 +
 8. Machine Learning (Optional): 8. Machine Learning (Optional):
  
 Introduction to machine learning algorithms. Introduction to machine learning algorithms.
 +
 Training and evaluating machine learning models for prediction and classification tasks. Training and evaluating machine learning models for prediction and classification tasks.
 +
 9. Data Visualization: 9. Data Visualization:
  
 Advanced data visualization techniques using Seaborn, Plotly, and other libraries. Advanced data visualization techniques using Seaborn, Plotly, and other libraries.
 +
 Creating interactive visualizations. Creating interactive visualizations.
 +
 Customizing plots for better storytelling. Customizing plots for better storytelling.
 +
 10. Interpretation and Insights: 10. Interpretation and Insights:
 +
 - Drawing meaningful conclusions from the analysis. - Drawing meaningful conclusions from the analysis.
 +
 - Communicating results effectively to stakeholders. - Communicating results effectively to stakeholders.
 +
 - Identifying actionable insights. - Identifying actionable insights.
  
 11. Case Studies and Projects: 11. Case Studies and Projects:
 +
 - Hands-on projects and real-world case studies to apply the concepts learned throughout the course. - Hands-on projects and real-world case studies to apply the concepts learned throughout the course.
 +
 - Solving practical data analysis problems. - Solving practical data analysis problems.
  
 12. Data Ethics and Privacy: 12. Data Ethics and Privacy:
 +
 - Understanding ethical considerations in data analysis. - Understanding ethical considerations in data analysis.
 +
 - Ensuring data privacy and compliance with regulations (e.g., GDPR). - Ensuring data privacy and compliance with regulations (e.g., GDPR).
  
 13. Version Control (Optional): 13. Version Control (Optional):
 +
 - Using version control systems like Git for tracking changes and collaborating on data analysis projects. - Using version control systems like Git for tracking changes and collaborating on data analysis projects.
 +
  
 14. Final Presentation and Reporting: 14. Final Presentation and Reporting:
 +
 - Creating professional reports and presentations summarizing the analysis. - Creating professional reports and presentations summarizing the analysis.
 +
 - Presenting findings to a non-technical audience. - Presenting findings to a non-technical audience.
  
 15. Optimization and Performance: 15. Optimization and Performance:
 +
 - Techniques for optimizing code and improving the performance of data analysis pipelines. - Techniques for optimizing code and improving the performance of data analysis pipelines.
  
 16. Continuous Learning: 16. Continuous Learning:
 +
 - Resources and strategies for staying up-to-date in the field of data analysis. - Resources and strategies for staying up-to-date in the field of data analysis.
 +
 - The importance of continuous learning in a rapidly evolving field. - The importance of continuous learning in a rapidly evolving field.
  
 17. Collaboration and Teamwork (Optional): 17. Collaboration and Teamwork (Optional):
 +
 - Strategies for collaborating on data analysis projects with team members. - Strategies for collaborating on data analysis projects with team members.
 +
 - Tools for collaborative work. - Tools for collaborative work.
  
  
products/ict/python/data_analysis_process.1694425190.txt.gz · Last modified: 2023/09/11 14:39 by wikiadmin